Roll No.

Total No. of Pages: 02

Total No. of Questions: 18

B.Tech. (Mechanical Engineering) (Sem.-7)

MECHANICAL VIBRATIONS Subject Code: BTME-803

M.Code: 71996

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly:

- 1) Differentiate Oscillation and Vibration.
- 2) In short define types of Vibrations.
- 3) Describe causes of vibration
- 4) Vibration is a necessary Evil. Explain.
- 5) What are various ffects of vibrations? Explain.
- 6) What do you understand by Natural frequency?
- 7) With help of Figure explain multi-degree freedom system.
- 8) What do you understand by degrees of freedom?
- 9) Why soldiers are asked to break their steps while crossing a bridge? Explain.
- 10) What is the principle of vibration absorber? Explain with help of neat sketch.

1 | M - 71996 (S2) - 603

SECTION-B

- 11) A spring mass system with mass m kg and stiffness k N/m has a natural frequency of 1 Hz. Determine the value of stiffness k1 of another spring which when arranged in conjunction with spring of stiffness k in series will lower the natural frequency by 20% and in parallel will raise the natural frequency by 20%.
- 12) Describe and differentiate Coulomb and Viscous Damping in detail.
- 13) Add two harmonic motions analytically which are represented by the equations:

$$x(1) = 4 \sin (7t + \pi/6)$$

$$x(2) = 5 \cos(7t - \pi/12)$$

Compare the result with graphical representation.

- 14) Torque T is applied at the midpoint of a uniform cross-section circular shaft of length 'l', which twists the shaft by angle α radians. If the torque is released suddenly, derive equation for resulting motion.
- 15) Describe torsional vibration absorber with neat sketch.

SECTION-C

- 16) Explain the following:
 - a) Vibration isolation transmissibility
 - b) Torsional vibration of circular shafts
- 17) A beam having length of 0.42 m, moment of inertia 10000m⁴ and modulus of elasticity 196000 N/m² is supporting two masses 40 kg and 20 kg at a distance of 0.16 and 0.24 m from one end. Determine lowest natural frequency by Rayleigh's method.
- 18) Determine the normal function for the boundary conditions as one end fixed and the other end free of a cantilever system of length 'l', starting with the expression for strain energy during free longitudinal vibration of bar with uniform area of cross-section.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M - 71996 (S2) - 603